mRNA-1273 and BNT162b2 COVID-19 vaccines elicit antibodies with differences in Fc-mediated effector functions

May 31, 2025

Authors: Kaplonek P, et al. Sci Transl Med. 2022 May 18;14(645):eabm2311.

Journal: Science Translational Medicine

Journal Abstract/ Summary:

The successful development of several coronavirus disease 2019 (COVID-19) vaccines has substantially reduced morbidity and mortality in regions of the world where the vaccines have been deployed. However, in the wake of the emergence of viral variants that are able to evade vaccine-induced neutralizing antibodies, real-world vaccine efficacy has begun to show differences across the two approved mRNA platforms, BNT162b2 and mRNA-1273; these findings suggest that subtle variation in immune responses induced by the BNT162b2 and mRNA-1273 vaccines may confer differential protection. Given our emerging appreciation for the importance of additional antibody functions beyond neutralization, we profiled the postboost binding and functional capacity of humoral immune responses induced by the BNT162b2 and mRNA-1273 vaccines in a cohort of hospital staff. Both vaccines induced robust humoral immune responses to wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to variants of concern. However, differences emerged across epitope-specific responses, with higher concentrations of receptor binding domain (RBD)- and N-terminal domain-specific IgA observed in recipients of mRNA-1273. Antibodies eliciting neutrophil phagocytosis and natural killer cell activation were also increased in mRNA-1273 vaccine recipients as compared to BNT162b2 recipients. RBD-specific antibody depletion highlighted the different roles of non-RBD-specific antibody effector functions induced across the mRNA vaccines. These data provide insights into potential differences in protective immunity conferred by these vaccines.

July 23, 2025
Authors: Stefanutti E, Ramani R, Whitener B, Dang H, Bélanger S, Somasundaram L, Cortina K, De Marco A, Tam T, Chai Q, Cameroni E, Gupta R, Schmid MA, Miller JL, Zumsteg AB, Purcell LA, Drewry LL. 0. Analysis of Fc-dependent effector functions of anti-malaria circumsporozoite protein antibodies. Microbiol Spectr 0:e00863-25. Journal: Microbiology Spectrum 
June 4, 2025
Antibody Engineering & Therapeutics 2025
June 3, 2025
The World Vaccine Congress Europe 2025
June 2, 2025
Festival of Biologics
June 1, 2025
The Fc-Mediated Effector Function Summit
May 31, 2025
Authors: Hawman, David W. et al. eBioMedicine, Volume 115, 105698
May 12, 2025
Authors: Crescioli, S, Jatiani, S, & Moise, L, (2025). mAbs, 17(1). Journal: mAbs
By Abigail Harris October 8, 2024
Woburn, MA / Newark, DE – October 1st, 2024 - SeromYx Systems, a cutting-edge immunology technology company, and ACROBiosystems, a leading provider for life science solutions and tools, are excited to announce the release of their joint study on the...
October 1, 2024
Summary: This study offers significant insights into the profiling of approved anti-CD20 monoclonal antibodies (mAbs) using the SeromYx Fc effector function platform. By employing high-quality, full-length human CD20 virus-like particles (VLPs) from ACROBiosystems, we achieved a physiologically relevant assessment of antibody binding and effector functions. This enabled a detailed comparison between Type I (Rituximab and Ofatumumab) and Type II (Obinutuzumab) anti-CD20 mAbs, revealing distinct binding profiles and effector function capabilities. Our findings indicated that Type I mAbs demonstrated stronger binding to CD20-VLPs and to Fc receptors in the presence of antigen compared to the Type II mAb, highlighting how structural differences could influence their mechanisms of action. We observed an overall correlation between biophysical tripartite binding assays and effector cell function assays, validating the predictive utility of tripartite binding assays for mAb effector functions. Importantly, the discovery of robust antibody-dependent neutrophil phagocytosis (ADNP) and eosinophil phagocytosis (ADEP) activities for anti-CD20 mAbs significantly broadens our understanding of their potential in vivo mechanisms. These findings suggest that the involvement of neutrophils and eosinophils could impact the efficacy and safety of these mAbs in diverse disease states and tissue environments. Additionally, the differentiation between Type I and Type II mAbs across multiple assays underscores the importance of these distinctions in therapeutic applications and next generation antibody design. In conclusion, broadly profiling Fc effector function using the SeromYx Fc effector function platform not only recapitulated the known Fc effector functions of anti-CD20 mAbs but also uncovered novel potential mechanisms of action. These insights have substantial implications for optimizing current anti-CD20 therapies and developing new, more effective mAbs. Furthermore, the CD20-VLP system presents an opportunity to design and characterize mAbs with tailored effector function profiles for specific therapeutic applications, potentially leading to more personalized and effective treatments for a variety of diseases. Authors: P. Hsueh, M. Friedman, S. Jatiani (2024)
More Posts →