Evaluation of a mosaic HIV 1 vaccine in a multicentre randomised double blind placebo controlled phase 1 2a clinical trial APPROACH and in rhesus monkeys.

July 21, 2018

Background

More than 18 million new cases of HIV-1 infection were diagnosed worldwide in 2016. No licensed prophylactic HIV-1 vaccine exists. A major limitation to date has been the lack of direct comparability between clinical trials and preclinical studies. We aimed to evaluate mosaic adenovirus serotype 26 (Ad26)-based HIV-1 vaccine candidates in parallel studies in humans and rhesus monkeys to define the optimal vaccine regimen to advance into clinical efficacy trials.


Methods

We conducted a multicentre, randomised, double-blind, placebo-controlled phase 1/2a trial (APPROACH). Participants were recruited from 12 clinics in east Africa, South Africa, Thailand, and the USA. We included healthy, HIV-1-uninfected participants (aged 18–50 years) who were considered at low risk for HIV-1 infection. We randomly assigned participants to one of eight study groups, stratified by region. Participants and investigators were blinded to the treatment allocation throughout the study. We primed participants at weeks 0 and 12 with Ad26.Mos.HIV (5 × 1010 viral particles per 0·5 mL) expressing mosaic HIV-1 envelope (Env)/Gag/Pol antigens and gave boosters at weeks 24 and 48 with Ad26.Mos.HIV or modified vaccinia Ankara (MVA; 108 plaque-forming units per 0·5 mL) vectors with or without high-dose (250 μg) or low-dose (50 μg) aluminium adjuvanted clade C Env gp140 protein. Those in the control group received 0·9% saline. All study interventions were administered intramuscularly. Primary endpoints were safety and tolerability of the vaccine regimens and Env-specific binding antibody responses at week 28. Safety and immunogenicity were also assessed at week 52. All participants who received at least one vaccine dose or placebo were included in the safety analysis; immunogenicity was analysed using the per-protocol population. We also did a parallel study in rhesus monkeys (NHP 13-19) to assess the immunogenicity and protective efficacy of these vaccine regimens against a series of six repetitive, heterologous, intrarectal challenges with a rhesus peripheral blood mononuclear cell-derived challenge stock of simian-human immunodeficiency virus (SHIV-SF162P3). The APPROACH trial is registered with ClinicalTrials.gov, number NCT02315703.


Findings

Between Feb 24, 2015, and Oct 16, 2015, we randomly assigned 393 participants to receive at least one dose of study vaccine or placebo in the APPROACH trial. All vaccine regimens demonstrated favourable safety and tolerability. The most commonly reported solicited local adverse event was mild-to-moderate pain at the injection site (varying from 69% to 88% between the different active groups vs 49% in the placebo group). Five (1%) of 393 participants reported at least one grade 3 adverse event considered related to the vaccines: abdominal pain and diarrhoea (in the same participant), increased aspartate aminotransferase, postural dizziness, back pain, and malaise. The mosaic Ad26/Ad26 plus high-dose gp140 boost vaccine was the most immunogenic in humans; it elicited Env-specific binding antibody responses (100%) and antibody-dependent cellular phagocytosis responses (80%) at week 52, and T-cell responses at week 50 (83%). We also randomly assigned 72 rhesus monkeys to receive one of five different vaccine regimens or placebo in the NHP 13-19 study. Ad26/Ad26 plus gp140 boost induced similar magnitude, durability, and phenotype of immune responses in rhesus monkeys as compared with humans and afforded 67% protection against acquisition of SHIV-SF162P3 infection (two-sided Fisher's exact test p=0·007). Env-specific ELISA and enzyme-linked immunospot assay responses were the principal immune correlates of protection against SHIV challenge in monkeys.


Interpretation

The mosaic Ad26/Ad26 plus gp140 HIV-1 vaccine induced comparable and robust immune responses in humans and rhesus monkeys, and it provided significant protection against repetitive heterologous SHIV challenges in rhesus monkeys. This vaccine concept is currently being evaluated in a phase 2b clinical efficacy study in sub-Saharan Africa (NCT03060629).


Funding

Janssen Vaccines & Prevention BV, National Institutes of Health, Ragon Institute of MGH, MIT and Harvard, Henry M Jackson Foundation for the Advancement of Military Medicine, US Department of Defense, and International AIDS Vaccine Initiative.


Authors:

Barouch DH, et al. Lancet. 2018 Jul 21; 392(10143): 232–243.



Journal:

Lancet

Access Full Publication
October 28, 2025
The Fc Review: How does Fc engineering shape bispecific antibody function? A Frontiers in Bioengineering and Biotechnology review explores how the Fc region can be tuned to control effector function, half-life, and safety, key levers in the design of next-generation bispecific antibodies ( bsAbs ). Background: Bispecific antibodies bring new therapeutic possibilities by engaging multiple targets at once. But this complexity also brings new challenges, from unwanted immune activation to altered pharmacokinetics . The Fc region plays a central role here, acting as both a stabilizing scaffold and a regulator of immune effector engagement
October 23, 2025
Abstract: Fc engineering to enhance antibody effector functions harbors the potential to improve therapeutic effects. Understanding FcγR expression and distribution in the tumor microenvironment prior to and following treatment may help guide immune-engaging antibody design and patient stratification. In this study, we investigated FcR-expressing immune effector cells in HER2 + and triple-negative breast cancers (TNBC), including neoadjuvant chemotherapy–resistant disease. FcγRIIIa expression, FcγRIIIa + NK cells, and classically activated (M1-like) macrophages correlated with improved anti-HER2 antibody efficacy. FcγRIIIa protein and FcγRIIIa + NK cells and macrophages were present in primary TNBC and retained in treatment-resistant tumors.
Text:
October 10, 2025
Antibody Engineering & Therapeutics 2025
September 15, 2025
Background Authorized COVID-19 vaccines require boosters for continued protection; however, the lack of crossplatform compatible boosters creates practical challenges to keeping populations protected. Methods This Phase 3, multicenter, international, randomized, active-controlled trial compared UB-612 as a thirddose heterologous booster to BNT162b2, ChAdOx1-S, or BBIBP-CorV homologous boosters in healthy subjects aged ≥16 years. Participants were randomly assigned 1:1 to receive a single intramuscular injection of UB-612 or an active comparator matching the primary dose, and were stratified for age, sex, N-protein seropositivity, and time since the last dose of their primary series COVID-19 vaccination. The primary objective was to show noninferiority of neutralizing antibody geometric mean titer (GMT) against live SARS-CoV-2 Wuhan strain after boosting with UB-612 or each of the licensed platform vaccines. Secondary and exploratory objectives covered short and long-term antibody responses. The safety analysis addressed subject and investigator reported adverse events. The study was registered on ClinicalTrials.gov, NCT05293665, and completed on September 12, 2023.
September 9, 2025
The Fc Review: Continuing our series taking a closer look at recent Fc-focused papers, what they found, and why it matters for antibody discovery and development. How does Fc engineering shape the translation of antibodies from preclinical models to the clinic? A new industry-wide review with 15 case studies examines the impact of Fc modifications on pharmacology and safety, and the challenges of predicting human outcomes from nonclinical studies. Background: Fc regions do not only extend half-life, they drive functions like ADCC , ADCP, CDC, and immune modulation. Engineering the Fc can enhance, silence, or redirect these activities. But the same changes that deliver potency can also introduce risk, especially when preclinical models do not fully mirror human Fc receptor biology.
August 25, 2025
NextGen Biomed 2026
August 13, 2025
The Fc Review: Kicking off a new series where we take a closer look at recent Fc-focused papers. What they found, and why it matters for antibody discovery and development. How much does FcγR genetic variation influence an antibody’s function? A recent FDA review examines the often-overlooked role of Fcγ receptor (FcγR) polymorphisms in shaping therapeutic antibody activity, and the implications for the assays used to measure it. Background: FcγRs are the “effector arm” connection between antibodies and immune cells, driving processes like ADCC and ADCP. Genetic variation in these receptors can alter binding strength, modulate effector function, and impact clinical outcomes. Understanding this interplay is important for therapeutic design, potency assessment, and patient response prediction.
July 23, 2025
Journal Abstract: Antibodies targeting the malaria circumsporozoite protein (CSP) can prophylactically protect against malaria by targeting Plasmodium parasites before they establish symptomatic blood-stage disease. Engineering the antibody Fc region to more effectively engage immune effector functions has produced therapeutic antibodies with enhanced potency against viral and oncological targets. However, whether Fc-dependent immune effector functions can contribute to the protection of malaria CSP mAbs or be further enhanced via engineering has been limitedly tested. Here, we report that Fc-dependent effector functions are required for achieving maximal protection via prophylactic treatment with the CSP mAb 317. We further report that Fc engineering modulated the activity of multiple CSP mAbs in multiple in vitro assays of effector function. Our studies revealed that the mAbs L9 and CIS43 were more potent drivers of antibody-dependent phagocytosis, NK activation and killing, and complement deposition. In contrast, 317, but not L9 and CIS43, drove enhanced activation of CSP-responsive T-cells after DC acquisition of mAb-complexed antigens. Collectively, our data suggest that effector function represents an important mechanism of anti-CSP antibodies with the potential to enhance activity through Fc engineering.
June 1, 2025
The Fc-Mediated Effector Function Summit
May 31, 2025
Authors: Kaplonek P, et al. Sci Transl Med. 2022 May 18;14(645):eabm2311.
More Posts →